Формула внутр энергии. Термодинамика. Внутренняя энергия. Выводы по уроку

Любое тело или предмет обладают энергией. Например, летящий самолет или падающий шар обладают механической энергией. В зависимости от взаимодействия с внешними телами различают два вида механической энергии: кинетическая и потенциальная. Кинетической энергией обладают все предметы, которые тем или иным способом движутся в пространстве. Это самолет, птица, летящий в ворота мяч, перемещающийся автомобиль и др. Вторым видом механической энергии является потенциальная. Этой энергией обладают, например, поднятый камень или мяч над поверхностью земли, сжатая пружина и т.п. При этом кинетическая энергия тела может переходить в потенциальную и наоборот.

Самолеты, вертолет и дирижабль обладают кинетической энергией


Сжатая пружина обладает потенциальной энергией

Рассмотрим пример. Тренер поднимает мяч и держит его в руках. При этом мяч обладает потенциальной энергией. Когда тренер бросает мяч на землю, то у него появляется кинетическая энергия, пока он летит. После того, как мяч отскакивает, также происходит перетекание энергии до тех пор, пока мяч не будет лежать на поле. В этом случае и кинетическая и потенциальная энергии равны нулю. Но у мяча при этом повысилась внутренняя энергия молекул из-за взаимодействия с полем.

Но существует еще внутренняя энергия молекул тела, например, того же мяча. Пока мы его перемещаем или поднимаем, внутренняя энергия не изменяется. Внутренняя энергия не зависит от механического воздействия или движения, а зависит только от температуры, агрегатного состояния и других особенностей.

В каждом теле имеется множество молекул, они могут обладать как кинетической энергией движения, так и потенциальной энергией взаимодействия. При этом внутренняя энергия является суммой энергий всех молекул тела.

Как изменить внутреннюю энергию тела

Внутренняя энергия зависит от скорости движения молекул в теле. Чем быстрее они движутся, тем выше энергия тела. Обычно это происходит при нагревании тела. Если же мы его охлаждаем, то происходит обратный процесс - внутренняя энергия уменьшается.

Если мы нагреваем кастрюлю при помощи огня (плиты), то мы совершаем над этим предметом работу и, соответственно, изменяем его внутреннюю энергию.

Внутреннюю энергию можно изменить двумя основными способами. Совершая работу над телом, мы увеличиваем его внутреннюю энергию и наоборот, если тело совершает работу, то его внутренняя энергия уменьшается. Вторым способом изменения внутренней энергии является процесс теплопередачи. Обратите внимание, что во втором варианте над телом не совершается работы. Так, например, нагревается стул зимой, стоящий рядом возле горячей батареи. Теплопередача всегда происходит от тел с более высокой температурой к телам с меньшей температурой.

Таким образом, зимой нагревается воздух от батарей. Проведем небольшой эксперимент, который можно выполнить в домашних условиях. Наберите стакан горячей воды и поставьте его в чашу или контейнер с холодной. Через время температура воды в обоих сосудах станет одинаковой. Это и является процессом теплопередачи, то есть изменения внутренней энергии без совершения работы. Существует три способа теплопередачи:

Любое макроскопическое тело имеет энер-гию , обусловленную его микросостоянием. Эта энергия называется внутренней (обо-значается U ). Она равняется энергии дви-жения и взаимодействия микрочастиц, из которых состоит тело. Так, внутренняя энер-гия идеального газа состоит из кинетической энергии всех его молекул, поскольку их вза-имодействием в данном случае можно пре-небречь. Поэтому его внутренняя энергия за-висит лишь от температуры газа (U ~ T ).

Модель идеального газа пре-дусматривает, что молекулы на-ходятся на расстоянии несколь-ких диаметров друг от друга. Поэтому энергия их взаимо-действия намного меньше энер-гии движения и ее можно не учитывать.

У реальных газов, жидкостей и твердых тел взаимодействием микрочастиц (атомов, молекул, ионов и т. п.) пренебречь нельзя, поскольку оно существенно влияет на их свойства. Поэтому их внутренняя энергия состоит из кинетической энергии теплового движения микрочастиц и потенциальной энергии их взаимодействия. Их внутренняя энергия, кроме температуры T, будет за-висеть также от объема V, поскольку изме-нение объема влияет на расстояние между атомами и молекулами, а, следовательно, и на потенциальную энергию их взаимодей-ствия между собой.

Внутренняя энергия — это функция состояния тела, которая опреде-ляется его температурой T и объемом V.

Внутренняя энергия однознач-но определяется температурой T и объемом тела V, характе-ризующими его состояние: U = U(T, V)

Чтобы изменить внутреннюю энергию те-ла, нужно фактически изменить или кинетическую энергию теплового движения мик-рочастиц, или потенциальную энергию их взаимодействия (или и ту и другую вместе). Как известно, это можно сделать двумя способами — путем теплообмена или вслед-ствие выполнения работы. В первом случае это происходит за счет передачи опреде-ленного количества теплоты Q; во втором — вследствие выполнения работы A.

Таким образом, количество теплоты и выполненная работа являются мерой изме-нения внутренней энергии тела :

Δ U = Q + A.

Изменение внутренней энер-гии происходит за счет отдан-ного или полученного телом не-которого количества теплоты или вследствие выполнения ра-боты.

Если имеет место лишь теплообмен, то изменение внутренней энергии происходит путем получения или отдачи определенного количества теплоты: Δ U = Q. При нагрева-нии или охлаждении тела оно равно:

Δ U = Q = cm(T 2 — Т 1) = cm ΔT.

При плавлении или кристаллизации твер-дых тел внутренняя энергия изменяется за счет изменения потенциальной энергии вза-имодействия микрочастиц, ведь происходят структурные изменения строения вещества. В данном случае изменение внутренней энер-гии равняется теплоте плавления (кристал-лизации) тела: ΔU — Q пл = λ m, где λ — удель-ная теплота плавления (кристаллизации) твер-дого тела.

Испарение жидкостей или конденсация пара также вызывает изменение внутренней энергии , которая равна теплоте парообра-зования: Δ U = Q п = rm, где r — удельная теп-лота парообразования (конденсации) жидко-сти.

Изменение внутренней энергии тела вслед-ствие выполнения механической работы (без теплообмена) численно равно значению этой работы: Δ U = A.

Если изменение внутренней энергии происходит вследст-вие теплообмена, то Δ U = Q = cm(T 2 — T 1), или Δ U = Q пл = λ m, или Δ U = Q п = rm.

Следовательно, с точки зрения моле-кулярной физики: Материал с сайта

Внутренняя энергия тела является суммой кинетической энергии теп-лового движения атомов, молекул или других частиц, из которых оно состоит, и потен-циальной энергии взаимодействия между ни-ми; с термодинамической точки зрения она является функцией состояния тела (системы тел), которая однозначно определяется его макропараметрами — температурой T и объе-мом V.

Таким образом, внутренняя энергия — это энергия системы, которая зависит от ее внутреннего состояния. Она состоит из энергии теплового движения всех микро-частиц системы (молекул, атомов, ионов, электронов и т. п.) и энергии их взаи-модействия. Полное значение внутренней энергии определить практически невоз-можно, поэтому вычисляют изменение внут-ренней энергии Δ U, которое происходит вследствие теплопередачи и выполнения ра-боты.

Внутренняя энергия тела равна сумме кинетической энергии теплового движения и потен-циальной энергии взаимодей-ствия составляющих его мик-рочастиц.

На этой странице материал по темам:

  • От чего зависит внутренняя энергия твердого тела

  • Способ изменения внутренней энергии тела краткий конспект

  • От каких макропараметров зависит внутренняя энергия тела

  • Краткое сообщение "об использования внутренней энергии тела"

  • 6.2. Первый закон термодинамики

    6.2.1. Внутренняя энергия идеального газа

    Внутренняя энергия любого вещества - это энергия теплового движения его молекул и энергия их взаимодействия между собой. Модель идеального газа предполагает отсутствие взаимодействия между его молекулами, поэтому внутренней энергией идеального газа принято считать только энергию теплового движения молекул. Внутренняя энергия газа представляет собой сумму кинетических энергий его молекул и определяется формулой

    U = N 〈 E k 〉 ,

    где N - число молекул (атомов), N = νN A ; ν - количество вещества; N A - постоянная (число) Авогадро, N A = 6,02 ⋅ 10 23 моль –1 ; 〈 E k 〉 - средняя кинетическая энергия одной молекулы, 〈 E k 〉 = i 2 k T ; i - число степеней свободы; k - постоянная Больцмана, k = 1,38 ⋅ 10 −23 Дж/К; T - абсолютная температура.

    Число степеней свободы зависит от количества атомов в молекуле газа и имеет следующие значения:

    • для одноатомного -

    i = 3;

    • для двухатомного -

    i = 5;

    • для трех- и многоатомного -

    i = 6.

    В Международной системе единиц внутренняя энергия вещества (газа) измеряется в джоулях (1 Дж).

    Внутренняя энергия идеального газа определяется формулой

    U = i 2 ν R T ,

    где i - число степеней свободы; ν - количество вещества (газа); R - универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T - абсолютная (термодинамическая) температура вещества.

    Внутренняя энергия для одно-, двух-, трех- и многоатомных газов определяется следующими формулами:

    • для одноатомного -

    U = 3 2 ν R T ;

    • для двухатомного -

    U = 5 2 ν R T ;

    • для трех- и многоатомного -

    U = 3νRT .

    Изменение внутренней энергии газа определяется разностью

    ΔU = U 2 − U 1 ,

    где U 1 - внутренняя энергия начального состояния газа; U 2 - внутренняя энергия конечного состояния газа.

    Изменение внутренней энергии газа связано с изменением кинетической энергии движения его молекул. Изменение кинетической энергии движения молекул вещества, в свою очередь, связано с изменением температуры. Следовательно, изменение внутренней энергии газа определяется изменением его температуры.

    Изменение внутренней энергии идеального газа рассчитывается по формуле

    Δ U = i 2 ν R (T 2 − T 1) = i 2 ν R Δ T ,

    где i - число степеней свободы; ν - количество вещества; R - универсальная газовая постоянная, R ≈ 8,31 Дж/(моль ⋅ К); T 2 - абсолютная температура конечного состояния газа; T 1 - абсолютная температура начального состояния идеального газа; ∆T = T 2 − T 1 .

    Изменение внутренней энергии для одно-, двух-, трех- и многоатомных газов определяется следующими формулами:

    • для одноатомного -

    Δ U = 3 2 ν R Δ T ;

    • для двухатомного -

    Δ U = 5 2 ν R Δ T ;

    • для трех- и многоатомного -

    ∆U = 3νR ∆T .

    Изменение внутренней энергии газа ΔU при различных процессах также различно и показано в таблице (для одно-, двух-, трех- и многоатомных газов):

    Внутренняя энергия газа не изменяется (U = const):

    • при изотермическом процессе, так как ΔT = 0;
    • при циклическом процессе, так как в конце процесса газ возвращается в состояние с исходными параметрами; циклическим (круговым, замкнутым) процессом, или циклом, называется процесс, при котором газ, пройдя ряд состояний, возвращается в исходное.

    Пример 1. В ходе некоторого процесса давление и объем постоянной массы идеального одноатомного газа изменяются таким образом, что pV 2 = const, где p - давление в паскалях; V - объем в кубических метрах. Во сколько раз уменьшается внутренняя энергия газа при увеличении его объема в 3 раза?

    Решение . Внутренняя энергия идеального одноатомного газа определяется следующей формулой:

    • для начального состояния газа -

    U 1 = 3 2 ν R T 1 ,

    где ν - количество вещества (газа); R - универсальная газовая постоянная, R ≈ 8,31 Дж/(моль ⋅ К); T 1 - температура газа в начальном состоянии;

    • для конечного состояния газа -

    U 2 = 3 2 ν R T 2 ,

    где T 2 - температура газа в конечном состоянии.

    Искомым является отношение

    U 1 U 2 = 3 ν R T 1 2 ⋅ 2 3 ν R T 2 = T 1 T 2 .

    Найдем отношение температур.

    Для этого из уравнения Менделеева - Клапейрона

    pV = νRT

    выразим давление

    p = ν R T V

    и подставим полученное выражение в заданный в условии задачи закон:

    ν R T V ⋅ V 2 = ν R T V = const , или TV = const.

    Заданное в условии соотношение между давлением и объемом эквивалентно полученному соотношению между температурой и объемом.

    Для двух состояний газа справедливо тождество

    T 1 V 1 = T 2 V 2 ,

    где V 1 - объем газа в начальном состоянии; V 2 - объем газа в конечном состоянии.

    Отсюда следует, что отношение температур определяется выражением

    T 1 T 2 = V 2 V 1 ,

    а искомое отношение внутренних энергий газа равно

    U 1 U 2 = V 2 V 1 = 3 .

    Пример 2. Термоизолированный сосуд, содержащий некоторое количество водорода, движется со скоростью 250 м/с. Как изменится температура газа, если сосуд внезапно остановить? Молярная масса водорода равна 2,0 г/моль. Теплоемкостью сосуда пренебречь.

    Решение . Энергия газа в сосуде определяется суммой:

    • для движущегося сосуда -

    E 1 = U 1 + W k 1 ,

    где U 1 - внутренняя энергия водорода (двухатомного газа) в движущемся сосуде (энергия теплового движения молекул водорода), U 1 = 5νRT 1 /2; ν - количество водорода, ν = m /M ; m - масса водорода; M - молярная масса водорода, M = 2,0 г/моль; T 1 - начальная температура водорода; R - универсальная газовая постоянная, R = = 8,31 Дж/(моль ⋅ К); W k 1 - кинетическая энергия водорода, движущегося вместе с сосудом, W k 1 = mv 2 /2; v - скорость сосуда, v = 250 м/с;

    • для остановившегося сосуда -

    E 2 = U 2 + W k 2 ,

    где U 2 - внутренняя энергия водорода (двухатомного газа) в остановившемся сосуде, U 2 = 5νRT 2 /2; T 2 - конечная температура водорода; W k 2 - кинетическая энергия водорода, остановившегося вместе с сосудом, W k 2 = 0.

    По условию задачи обмена энергией между газом в сосуде и окружающей средой не происходит, так как сосуд является термоизолированным; поэтому энергия газа сохраняется

    E 1 = E 2 ,

    или, в явном виде, -

    U 1 + W k 1 = U 2 + W k 2 .

    Подстановка в полученное равенство выражений для внутренней и кинетической энергий газа в сосуде дает

    5 m R T 1 2 M + m v 2 2 = 5 m R T 2 2 M .

    Искомая разность температур определяется формулой

    Δ T = v 2 M 5 R .

    Вычислим:

    Δ T = (250) 2 ⋅ 2,0 ⋅ 10 − 3 5 ⋅ 8,31 = 3,0 К.

    При внезапной остановке сосуда, движущегося с указанной скоростью, температура содержащегося в нем водорода повышается на 3,0 К.

    Вну́тренняя эне́ргия тела (обозначается как E или U ) - это сумма энергий молекулярных взаимодействий и тепловых движений молекулы. Внутренняя энергия является однозначной функцией состояния системы. Это означает, что всякий раз, когда система оказывается в данном состоянии, её внутренняя энергия принимает присущее этому состоянию значение, независимо от предыстории системы. Следовательно, изменение внутренней энергии при переходе из одного состояния в другое будет всегда равно разности между ее значениями в конечном и начальном состояниях, независимо от пути, по которому совершался переход.

    Внутреннюю энергию тела нельзя измерить напрямую. Можно определить только изменение внутренней энергии:

    Эта формула является математическим выражением первого начала термодинамики

    Для квазистатических процессов выполняется следующее соотношение:

    Идеальные газы

    Согласно закону Джоуля, выведенному эмпирически, внутренняя энергия идеального газа не зависит от давления или объёма. Исходя из этого факта, можно получить выражение для изменения внутренней энергии идеального газа. По определению молярной теплоёмкости при постоянном объёме, . Так как внутренняя энергия идеального газа является функцией только от температуры, то

    .

    Эта же формула верна и для вычисления изменения внутренней энергии любого тела, но только в процессах при постоянном объёме (изохорных процессах); в общем случае является функцией и температуры, и объёма.

    Если пренебречь изменением молярной теплоёмкости при изменении температуры, получим:

    ,

    где - количество вещества, - изменение температуры.

    Литература

    • Сивухин Д. В. Общий курс физики. - Издание 5-е, исправленное. - М .: Физматлит , 2006. - Т. II. Термодинамика и молекулярная физика. - 544 с. - ISBN 5-9221-0601-5

    Примечания


    Wikimedia Foundation . 2010 .

    Смотреть что такое "Внутренняя энергия" в других словарях:

      внутренняя энергия - Функция состояния закрытой термодинамической системы, определяемая тем, что ее приращение в любом процессе, происходящем в этой системе, равно сумме теплоты, сообщенной системе, и работы, совершенной над ней. Примечание Внутренняя энергия… … Справочник технического переводчика

      Энергия физ. системы, зависящая от её внутр. состояния. В. э. включает энергию хаотического (теплового) движения всех микрочастиц системы (молекул, атомов, ионов и т. д.) и энергию вз ствия этих ч ц. Кинетич. энергия движения системы как целого и … Физическая энциклопедия

      ВНУТРЕННЯЯ ЭНЕРГИЯ - энергия тела или системы, зависящая от их внутреннего состояния; складывается из кинетической энергии молекул тела и их структурных единиц (атомов, электронов, ядер), энергии взаимодействия атомов в молекулах, энергии взаимодействия электронных… … Большая политехническая энциклопедия

      Тела складывается из кинетической энергии молекул тела и их структурных единиц (атомов, электронов, ядер), энергии взаимодействия атомов в молекулах и т. д. Во внутреннюю энергию не входит энергия движения тела как целого и потенциальная энергия … Большой Энциклопедический словарь

      внутренняя энергия - ▲ энергия материальное тело, в соответствии с, состояние, внутренний температура внутренняя эн … Идеографический словарь русского языка

      внутренняя энергия - – это полная энергия системы за вычетом потенциальной, обусловленной воздействием на систему внешних силовых полей (в поле тяготения), и кинетической энергии движущейся системы. Общая химия: учебник / А. В. Жолнин … Химические термины

      Современная энциклопедия

      Внутренняя энергия - тела, включает кинетическую энергию составляющих тело молекул, атомов, электронов, ядер, а также энергию взаимодействия этих частиц друг с другом. Изменение внутренней энергии численно равно работе, которую совершают над телом (например, при его… … Иллюстрированный энциклопедический словарь

      внутренняя энергия - термодинамическая величина, характеризизующая количество всех видов внутренних движений, совершенных в системе. Измерить абсолютную внутреннюю энергия тела невозможно. На практике измеряют лишь изменение внутреннюю энергию… … Энциклопедический словарь по металлургии

      Тела, складывается из кинетической энергии молекул тела и их структурных единиц (атомов, электронов, ядер), энергии взаимодействия атомов в молекулах и т. д. Во внутреннюю энергию не входит энергия движения тела как целого и потенциальная энергия … Энциклопедический словарь

    Книги

    • Путь Ци. Энергия жизни в вашем теле. Упражнения и медитации , Свейгард Мэтью. Уравновешенность и внутренняя гармония даны нам от рождения, но современная жизнь легко может выбить нас из естественного равновесия. Иногда мы нарушаем его сознательно, скажем, едим слишком…

    Н. П. ,
    , МОУ Июльская СОШ с УИОП, с. Июльское, Воткинский р-н, Удмуртская Республика

    Внутренняя энергия

    Цель урока: организовать деятельность учащихся по восприятию понятий «термодинамика», «внутренняя энергия», «число степеней свободы»; по осмыслению нахождения внутренней энергии тела, идеального газа; по запоминанию общей формулы вычисления внутренней энергии идеального газа, используя понятие числа степеней свободы; по оценке внутренней энергии какого-то объёма или массы газа.

    Задачи урока: усвоить понятия «термодинамика», «внутренняя энергия», «число степеней свободы»; уяснить, для чего изучаем внутреннюю энергию, почему учимся находить внутреннюю энергию идеального газа; научиться отличать одноатомный газ от двухатомного, уяснить, что у них разное число степеней свободы; научиться находить внутреннюю энергию идеального газа.

    Оборудование: доска, оформленная к уроку; таблицы-картины; мячик, пластилиновый шарик; карточки – опорный конспект, домино, тесты, контрольные.

    Оформление доски

    Ход урока

    1. Организационный этап (знакомство с классом, знакомство с планом работы на уроке).

    2. Повторение (актуализация знаний, повторение формул по МКТ газа, игра в домино: на каждую парту раздаётся комплект карточек домино, которые за определённое время надо разложить так, чтобы получился замкнутый круг; начать можно с любой карточки).

    3. Изучение нового материала

    Урок начнём с показа картин:

    – Использование мускульной силы человека и животных для совершения работы (картина из набора по истории).

    – Использование простых механизмов (рычага, блоков, клина, ворота, наклонной плоскости) для совершения работы.

    – Использование энергии ветра и воды.

    – Использование перехода газа из одного состояния в другое или вещества из одного состояния в другое для получения телом механической энергии, т.е. перехода внутренней энергии в механическую (паровые турбины, тепловые электростанции, двигатели внутреннего сгорания).

    Термодинамика – часть физики, показывающая, что внутреннюю энергию можно использовать.

    Опыт с пластилиновым шариком (поднятый шарик обладает потенциальной энергией, при падении она переходит в кинетическую, но, упав на пол, шарик не отскакивает. Куда исчезла энергия? Что произошло с шариком?).

    Определение понятия «внутренняя энергия» – это энергия молекул, из которых состоит тело. Обозначается U , измеряется в джоулях (Дж).

    Какой энергией обладают молекулы? Почему? (Кинетической, потому что движутся. Потенциальной, потому что взаимодействуют.)

    Для чего мы ввели модель идеального газа? (Чтобы не учитывать взаимодействие молекул, т.к. идеальный газ – это газ, молекулы которого не взаимодействуют.) Какой вывод можно сделать об энергии молекул идеального газа? (Они обладают только кинетической энергией.)

    Мы знаем, что молекулы газа в пространстве движутся по трём направлениям: Х, Y, Z . Если кинетическая энергия молекулы равна Е к = (3/2), то на одно направление приходится энергия /2. Число 3 называют числом степеней свободы (количество направлений движения молекул) одно-атомного газа.

    А сейчас посмотрите опорный конспект вывода формулы внутренней энергии идеального газа (у каждого на парте).

    Поработаем с этим конспектом. На основании чего переходим от одного выражения к другому?

    Давайте вычислим внутреннюю энергию воздуха, находящегося в классе. Давление атмосферное 1,01 · 10 5 Па, объём возьмём по размерам класса: 6 × 12 × 3 м 3 . Учитывая, что воздух состоит из кислорода и азота, число степеней свободы равно 5, как у всех двухатомных газов.

    Это почти такая же энергия, которая требуется для подъёма тяжёлого самолёта на высоту 30 м.

    4. Выводы по уроку

    Что мы сегодня узнали? (Что такое термодинамика, внутренняя энергия, число степеней свободы.) Какова цель урока? (Для чего нужно изучать внутреннюю энергию и как её вычислять для идеального газа.)

    5. Проверка усвоения. Выполните тестовое задание. Одну карточку контроля (обе лежат на каждом столе) заполните для учителя, другую – для себя, чтобы оценить свою работу.

    1. Найдите внутреннюю энергию 2 кг водорода при температуре 200 °С.

    А) 6,1 кДж; Б) 6,1 МДж; В) 610 000 Дж.

    2. Найдите внутреннюю энергию 5 м 3 гелия при давлении 10 5 Па.

    А) 7,5 МДж; Б) 7,5 кДж; В) 750 000 Дж.

    3. Сравните внутреннюю энергию 32 г кислорода и 2 г водорода при температуре 23 °С.

    А) U О > U Н; Б) U О < U Н; В) U О = U Н.

    4. Сравните внутреннюю энергию 1 моля кислорода и 1 моля аргона при одной и той же температуре.

    А) U О > U Ar ; Б) U О < U Ar ; В) U О = U Ar .

    5. От каких величин зависит внутренняя энергия газа?

    А) только от Т ; Б) только от V ; В) от Т и V .

    Карточка контроля

    6. Рефлексия. По оставшейся карточке оцените свою работу. Сколько верных ответов – такая и оценка.

    7. Домашнее задание. § 54 по учебнику Касьянова В.А. «Физика-10» до раздела «Изменения внутренней энергии». Вопросы 1–4 на с. 266.

    8. Финал. Учитель. Благодарю за работу! Мне сегодня было приятно с вами работать.


    Николай Петрович Кошкин – учитель физики высшей квалификационной категории, педагогический стаж 37 лет. Сочетает в своей работе новаторство и педагогические традиции, умеет добиваться на уроке максимальной отдачи, вовлекая детей в совместное творчество. Учит детей рационально организовывать свой труд, работать с книгой, логично и последовательно излагать свои мысли, самостоятельно выполнять задания. Его ученики неоднократно побеждали на районных олимпиадах в 2002–2005 гг., НПК старшеклассников «Путь к успеху» в секции «Физика, астрономия». В 2006 г. исследовательская работа по теме «Тест-контроль – прибор для проверки тестов» учащихся Чиркова Б. и Варламова А. была представлена на республиканской НПК «Юность – науке и технике!», турнире «ЕНОТик» (в 2006 г. учащиеся 5–8-го классов вошли в десятку лучших). Николай Петрович активно внедряет технологию модульного обучения, разработал спецкурс «Физика в сельской школе» для факультативных занятий, проводит практикумы по решению задач повышенной трудности для учителей района, успешно готовит выпускников школы к поступлению в высшие учебные заведения, руководит ШМО учителей физики, химии, биологии. Николай Петрович признан лучшим в номинации «Верность педагогической профессии» в районном конкурсе профессионального мастерства «Учитель года-2004». За свой многолетний труд неоднократно награждался грамотами РУНО, МНО Удмуртской республики. Любит разводить цветы, собирать ягоды и грибы, решать кроссворды и расчётные задачи. С женой Тамарой Александровной, учительницей начальных классов (педагогический стаж 40 лет), вырастили четверых детей: Александр – водитель, Пётр – столяр, механизатор, Илья – энергетик, студент-заочник, Екатерина – студентка ИжГСХА. Сам вырос в семье колхозников, где было шестеро детей (а в семье жены – десять). Закончив экономический факультет ИжГСХА, работал 17 лет по совместительству бухгалтером в СПК «Селеговское» Финалист республиканского конкурса «Учитель года-2007», победитель всероссийского конкурса в рамках ПНПО «Лучшие учителя России-2008», ветеран труда, награждён Знаком Почёта.